
54

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

Shastri 4th Semester

Computer Science

Unit: 2nd

INTRODUCTION OF "C LANGUAGE"

C is a high-level programming language that was developed in the early 1970s by

Dennis Ritchie at Bell Labs. C is a procedural programming language, which means

that it is designed to support the creation of algorithms that are executed step-by-

step. C is widely used for a variety of applications, including operating systems,

device drivers, embedded systems, and high-performance scientific and engineering

applications. One of the key features of the C language is its low-level access to

computer memory, which makes it a popular choice for systems programming. C is

also widely used as a systems programming language because it is relatively

lightweight and efficient.

HISTORY OF C LANGUAGE

C programming language was developed in the early 1970s by Dennis Ritchie at

Bell Labs. The development of C can be traced back to the early 1970s, when

Ritchie, as part of a team at Bell Labs, began working on a new operating system

called UNIX. The team wanted to create a high-level programming language that

could be used to write the system's software. The C programming language was

created as part of this project, and it was used to write the UNIX operating system,

as well as many of the tools that were used to develop it.

The first version of C was called "K&R C," named after the authors of the book "The

C Programming Language," which was published in 1978. The book became a

popular reference for the C language and it described the then-new language, which

was still called "C with Classes" at the time.

The C programming language quickly gained popularity, and it was widely adopted

for systems programming, as well as for writing other types of high-performance

software. C compilers were developed for many different platforms, including

mainframes, minicomputers, and microcomputers, making C one of the most widely

available and widely used programming languages of all time.

55

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

Throughout its history, C has undergone several standardization processes, the first

in 1989, known as ANSI C which was later ISO standardized in 1990. And the latest

is C11 which was published in 2011.

C programming language continues to be widely used today, particularly in systems

programming and the development of embedded systems and other low-level

applications. The language also forms the basis of many popular programming

languages, such as C++ and Objective-C, which have incorporated many of C's

features and concepts into their own designs.

FEATURES OF "C LANGUAGE"

• C is a procedural programming language, which means that it is designed to

support the creation of algorithms that are executed step-by-step.

• C is a high-level programming language that provides a structured approach to

program design.

• C provides low-level access to computer memory, which makes it a popular

choice for systems programming.

• C has a relatively small and simple set of keywords, making it easy to learn and

understand.

• C is an efficient language, both in terms of the speed of execution and the use of

computer memory.

• C has a rich set of built-in operators and functions for performing various

operations, like arithmetic, logical, bitwise operations etc.

• C has the ability to handle low-level activities, like memory management and bit

manipulation.

• C allows you to create reusable code in the form of functions and libraries.

• C is a portable language which allows you to run the same code on different

machines with little or no modification.

56

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

• C has an active user community and a wide variety of libraries, frameworks and

open-source software available that can be easily integrated into C programs.

• C allows for the creation of high-performance, efficient code through its control

over memory management and low-level operations.

• C is widely used for systems programming, including the development of

operating systems, device drivers, and embedded systems.

• C is a flexible language that supports both structured programming and pointer

manipulation.

• C has a rich set of operators and a standard library which makes it easy to handle

complex operations and data structures.

• C is compatible with most platforms and operating systems, making it a highly

portable language.

• C allows for direct manipulation of hardware and memory, making it suitable for

low-level programming tasks such as device drivers and embedded systems.

• C encourages modularity, scalability, and maintainability of source code by using

functions, structured data types, and separate compilation.

• C has been actively used for a long time, and thus a lot of third-party libraries

and tools are available for various purposes.

• C has C++ as its superset, so C code can be easily integrated with C++ code.

• C has a simple, clean syntax which makes it a great choice for both beginners and

experienced programmers.

57

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

C language: Character Set

The character set of a programming language defines the set of characters that are

used to represent the source code of a program. In the case of the C language, the

standard character set includes the following:

• Upper and lowercase letters of the English alphabet (A-Z, a-z)

• Digits (0-9)

• Special characters such as punctuation marks, mathematical symbols, and

whitespace characters

• A set of control characters, such as newline, tab, and backspace.

In addition to the standard character set, C also supports the use of wide characters

and multibyte characters. Wide characters are used to represent characters from other

character sets, such as characters from Asian languages. Multibyte characters are

used to represent characters that are not part of the standard character set, such as

non-English letters and special symbols.

It's worth noting that the C language standard also defines the behavior of the C

implementation when it comes to character set and character handling. Some

implementations may have slight variations in the character set, but the most widely

used ASCII and extended ASCII character sets are commonly used in C language.

It's also important to note that while C is a powerful language, it's not the best choice

for handling Unicode characters and internationalization, and libraries like ICU or

GLib are commonly used to handle such cases.

PRE-PROCESSORS OF C LANGUAGE

In the C programming language, pre-processors are a type of program that processes

the source code before it is passed to the compiler. They are used to make

modifications to the source code, such as including other files, defining macros, and

expanding macro invocations.

There are several pre-processors in C, which include:

#include: This pre-processor is used to include the contents of another file in the

source code. This is commonly used to include header files, which contain function

declarations and other information that is needed by the program.

58

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

#define: This pre-processor is used to define macros, which are a way of replacing

one piece of text with another. Macros are commonly used to define constants, as

well as to create short-hand notation for commonly used code.

#ifdef and #ifndef: These pre-processors are used to conditionally include or exclude

portions of the code. They allow you to write code that is only compiled if a certain

macro is defined, or if it is not defined.

#pragma: This pre-processor is used to issue special commands to the compiler.

This might include turning on or off certain warning or optimization flags.

#error and #warning: These pre-processors can be used to include error and

warning messages in the source code. These messages will be displayed when the

code is pre-processed, allowing you to catch and address any issues before the code

is compiled.

In short, pre-processors allow to control of the compilation process and prepare the

source code for it, by replacing macros, including or excluding code, or even adding

custom error/warning messages.

TYPES OF PRE-PROCESSORS OF C LANGUAGE

The C programming language has several types of pre-processors, which can be

broadly categorized into three main types:

File inclusion pre-processors: These pre-processors include the contents of another

file in the source code. The #include pre-processor is an example of this. It is used

to include the contents of header files, which contain function declarations and other

information that is needed by the program.

Macro pre-processors: These pre-processors define and manipulate macros, which

are a way of replacing one piece of text with another. Macros are commonly used to

define constants, as well as to create short-hand notation for commonly used code.

Examples of this type of pre-processors are #define, #undef, #ifdef, #ifndef

Conditional compilation pre-processors: These pre-processors are used to

conditionally include or exclude portions of the code. They allow you to write code

that is only compiled if a certain macro is defined, or if it is not defined. Examples

of this type of pre-processors are #if, #ifdef, #ifndef, #else, #elif, #endif

59

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

Other pre-processors: This includes #pragma which is used to issue special

commands to the compiler, #error, and #warning which can be used to include error

and warning messages in the source code.

The pre-processors are processed by the preprocessor which is a separate program

that runs before the compiler, in the compilation process and modifies the source

code.

HEADER FILES

In the C programming language, a header file is a file that contains declarations for

functions, variables, and other constructs that can be used in a C program. These

declarations, also known as prototypes, provide the compiler with the information it

needs to understand how to use the functions, variables, and other constructs that are

defined in the header file.

Header files typically have a .h file extension, for example, stdio.h, string.h, etc.

Header files can be included in a C program using the #include pre-processor

directive. For example, the following line will include the contents of the studio.h

header file in the program:

#include <stdio.h>

Some common uses of header files include:

• Declaring functions, variables, and constants that are provided by a library.

• Providing definitions for structs, enumerations, and other user-defined data types.

• Declaring external variables and functions.

• Declaring global variables, constants and function prototypes that are used in

multiple source files, so that they can be shared across multiple source files

• Declaring Macros and Inline functions

• Including a header file has the effect of copying the contents of the header file

into the source code file at the point where the #include directive appears. This

allows the declarations in the header file to be used in the rest of the program and

allows the compiler to properly link the functions and variables defined in the

header file to the rest of the program.

60

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

C LANGUAGE: VARIABLES AND IDENTIFIERS

In C language, a variable is a named location in memory that can be used to store a

value. A variable must be declared before it can be used, and its type determines the

kind of value it can store. The basic types in C language include int, float, double,

char, and _Bool.

An identifier is a name given to a variable, function or other constructs in C

language. Identifiers are used to refer to these entities in the program.

C language has a set of rules for naming identifiers which include:

• An identifier can only contain letters, digits, and underscores.

• The first character of an identifier must be a letter or an underscore.

• Identifiers are case-sensitive, meaning that "myVariable" and "myvariable"

are two different identifiers.

• Identifiers cannot be a keyword or predefined identifier. C has a set of

keywords such as if, while, for, etc. which have specific meaning and cannot

be used as identifiers.

For example, the following are valid variable declarations in C:

int age; float price; double pi = 3.14; char letter = 'A';

It's worth noting that good variable naming conventions can make the code more

readable and maintainable. It's a good practice to use meaningful, descriptive names

for variables and avoid using short or generic names like "x" or "temp".

Also, the C standard recommends using camelCase or snake_case conventions for

variable names and camelCase or PascalCase conventions for naming functions and

structs.

C LANGUAGE VARIABLES WITH EXAMPLES

A variable in C is a place in memory where a programmer can store a value.

Variables have a name and a data type, which tells the compiler the size and layout

of the variable's memory, as well as how to interpret the stored value.

For example, consider the following line of code:

int age = 25;

61

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

This creates a variable called "age" with the data type of "int", and assigns it the

value of 25.

The syntax for creating a variable in C is

data_type variable_name = value;

Where data_type can be one of C's standard datatypes such as int, float, char, etc,

variable_name is the name of the variable and value is the initial value of the

variable.

Here are some examples of C variables:

int x = 10;

float y = 3.14;

char ch = 'A';

bool b = true;

The first line creates an integer variable named "x" and assigns it the value of 10.

The second line creates a floating-point variable named "y" and assigns it the value

of 3.14.

The third line creates a character variable named "ch" and assigns it the value of 'A'

The forth line creates a Boolean variable named "b" and assigns it the value of true

Once a variable is created, its value can be accessed and modified throughout the

program.

THE GLOBAL AND LOCAL VARIABLES OF THE C LANGUAGE

In C, a variable can be defined as either a global variable or a local variable,

depending on where it is declared in the program.

Global variables: Global variables are declared outside of any function, usually at

the top of the file before any functions. Global variables are available for use

throughout the entire program, including within all functions. The value of a global

variable can be accessed and modified by any function in the program, and it retains

its value even after a function call is completed.

For example:

62

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

int global_var = 5;

int main() {

 global_var = 10;

 return 0;

}

Here, the variable global_var is a global variable and can be accessed by any function

in the program,

Local variables: On the other hand, local variables are declared within a function,

and they are only available for use within that function. They are also known as

automatic or stack variables. The value of a local variable is only accessible within

the function in which it is declared, and the variable is destroyed when the function

call is completed.

For example:

int main() {

 int local_var = 5;

 return 0;

}

Here, the variable local_var is a local variable and can only be accessed within the

main function.

It is a good practice to use local variables as much as possible, because they are

easier to debug, and can prevent unexpected changes or conflicts in the values of the

global variables.

In C, variables can be grouped into several categories based on their storage class

and scope. The storage class of a variable determines where the variable is stored in

memory, and the scope of a variable determines where the variable can be accessed

in the program.

Automatic variables: Automatic variables are also known as local variables, which

are declared inside a function and are created and initialized every time the function

63

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

is called, and their values are destroyed when the function returns. They are stored

in the stack memory.

Static variables: Static variables are also known as internal linkage variables, which

are also declared inside a function but their value persists between function calls, are

only created once when the program is loaded, and are destroyed when the program

ends. They are stored in the data section of the program

External variables: External variables are also known as global variables, which

are declared outside of any function, usually at the top of the file before any

functions. They are created once when the program is loaded and are destroyed when

the program ends. They are also stored in the data section of the program

Register variables: Register variables are similar to automatic variables, but they

are stored in the CPU registers instead of memory, this is used to improve

performance by reducing the memory access time. The register keyword can be used

to request that a variable be stored in a register. The compiler will choose which

variable to store in a register, but it will not guarantee that the variable will be stored

in a register. It is recommended to use automatic and registered variables for local

variables because they have faster access time and limited scope, which reduces the

risk of unexpected changes. Using variables of appropriate storage class, as it helps

to manage memory and improve performance. Global variables should be used with

caution, as they can cause conflicts or unexpected changes in the program if not

handled properly.

a table that lists the different types of variables in C and their characteristics:

Type of

Variable

Description Example

Automatic

variables

Variables are declared inside a function and are

created and initialized every time the function is

called, and their values are destroyed when the

function returns. They are stored in the stack

memory

int x;

Static variables Variables that are declared inside a function but

whose value persists between function calls, are

only created once when the program is loaded,

static int y;

64

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

and are destroyed when the program ends. They

are stored in the data section of the program

External

variables

Variables that are declared outside of any

function, usually at the top of the file before any

functions. They are created once when the

program is loaded and are destroyed when the

program ends. They are also stored in the data

section of the program

int global_var;

Register

variables

Variables that are stored in the CPU registers

instead of memory, this is used to improve

performance by reducing memory access time

register int z;

C LANGUAGE: CONSTANT AND LITERAL

In C language, a constant is a variable whose value cannot be modified after it is

assigned. Constants are often used to represent values that will not change during

the execution of a program, such as the value of pi or the maximum value that a

variable can take.

There are several ways to define a constant in C:

• The const keyword: A variable can be defined as a constant by using the const

keyword. For example, const int MAX_AGE = 100; declares a constant

named MAX_AGE with a value of 100.

• The #define preprocessor directive: The #define preprocessor directive can

be used to define a constant. For example, #define MAX_AGE 100 defines

a constant named MAX_AGE with a value of 100.

• Enumerations: Enumerations (or enums) are a way to define a set of named

integer constants. For example, enum days {SUN, MON, TUE, WED, THU,

FRI, SAT}; creates an enumeration type named "days" with named constants

SUN, MON, TUE, WED, THU, FRI, and SAT.

A literal is a value that is written directly in the source code of a program. Literals

are used to initialize variables or to provide values for other parts of the program. C

language supports several types of literals:

65

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

• Numeric literals: These are numbers written directly in the source code. For

example, 50, 3.14, 0xFF.

• Character literals: These are characters written directly in the source code. For

example, 'A', '5', '\n'.

• String literals: These are sequences of characters written directly in the source

code. For example, "Hello, world!", "This is a string".

• Boolean literals: These are the constants true and false which represent the

logical values.

That constants and literals are similar but not the same, constants are variables that

cannot be modified and literals are values written directly in the source code.

The ‘C’ LANGUAGE CONSTANT WITH EXAMPLES

In the C programming language, a constant is a value that cannot be changed during

the execution of the program. Constants are typically used to store fixed values such

as pi or to define symbolic names for values that are used throughout the program.

There are two ways to define a constant in C:

Using the #define preprocessor directive:

#define PI 3.14

This creates a constant named PI with a value of 3.14.

Using the const keyword:

Example

const double PI = 3.14;

This creates a constant named PI with a value of 3.14 and a data type of double.

Both ways have the same meaning and usage, but using const makes the constant

visible to the compiler, so it can check for the validity of the use of the constant,

such as in cases where the constant is assigned a value.

For example:

#define MAX_LENGTH 50

const int MIN_LENGTH = 5;

66

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

int main()

{

 int array[MAX_LENGTH];

 for(int i=0; i<MIN_LENGTH; i++)

 array[i] = i;

 return 0;

}

In this example, MAX_LENGTH and MIN_LENGTH are constants that are used to

define the size of an array and a loop. Because they are constants, their values cannot

be changed during the execution of the program. It is a best practice to use constants

where appropriate because it makes the code more readable, and easier to maintain

and modify.

TYPES OF CONSTANTS USED IN C LANGUAGE

In C, constants can be grouped into several categories based on their type and value:

Numeric constants: These are constants that represent numbers, such as integers

(e.g. 12, -7) or floating-point numbers (e.g. 3.14, -2.5). They can be represented in

decimal, octal or hexadecimal notation, and can have a suffix indicating their type

(e.g. 12L for long int, 12U for unsigned int).

Character constants: These are constants that represent single characters, such as

letters, digits, or symbols. They are enclosed in single quotes, e.g. 'A', '3', '$'.

String constants: These are constants that represent a sequence of characters, such

as a word or a sentence. They are enclosed in double quotes, e.g. "hello", and

"goodbye".

Enumeration constants: These are constants that are defined using the enum

keyword and are represented by a set of named values. They are used to define a

distinct type consisting of a set of named values.

67

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

enum color {red, green, blue};

enum color c = red;

Boolean constants: These are constants that have either a true or false value and are

used to represent boolean logic. They are not specified with any keywords but true

and false are keywords.

bool is_valid = true;

Symbolic constants: These are constants that are defined using the #define

preprocessor directive or the const keyword, and are represented by a name that

stands for a specific value. They are typically used to define fixed values such as pi

or to define symbolic names for values that are used throughout the program.

#define PI 3.14

const double E = 2.71828;

It is important to keep in mind that even though these constants cannot change during

runtime, but the value of some constants like those defined using the #define

preprocessor directive are replaced by the pre-processor in the source code before it

is passed to the compiler.

a table that lists the different types of constants in C and their characteristics:

Type of

Constant

Description Example

Numeric

constants

Constants that represent numbers 12, -7, 3.14, -2.5

Character

constants

Constants that represent single characters 'A', '3', '$'

String

constants

Constants that represent a sequence of

characters

"hello",

"goodbye"

Enumeration

constants

Constants that are defined using the enum

keyword and are represented by a set of

named values

enum color {red,

green, blue};

68

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

Boolean

constants

Constants that have either a true or false

value and are used to represent boolean logic

true, false

Symbolic

constants

Constants that are defined using the #define

preprocessor directive or the const keyword,

and are represented by a name that stands for

a specific value

#define PI 3.14,

const double E =

2.71828;

Keep in mind that constants defined with the const keyword are visible to the

compiler, and the program can take advantage of this fact, with the compiler doing

things like range checking, or type checking on these constants, which is not possible

when using #define

C LANGUAGE DATATYPES

In the C programming language, data types are used to define the type of a variable

or a value. They tell the compiler the size of the variable and how it will be used in

the program.

The following is a table of the most common data types in C, along with their sizes

and ranges.

Data Type Size (bytes) Range

char 1 -128 to 127 or 0 to 255

short 2 -32,768 to 32,767

int 4 -2,147,483,648 to 2,147,483,647

long 4 -2,147,483,648 to 2,147,483,647

long long 8 -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

float 4 1.2 x 10^-38 to 3.4 x 10^38 (6 to 7 decimal digits)

double 8 2.3 x 10^-308 to 1.7 x 10^308 (15 decimal digits)

It is important to keep in mind that the size of data types may vary depending on the

system or platform, so these sizes should be used as a general guide rather than an

69

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

absolute rule. Also, not all architectures and compilers support all the

aforementioned datatype, in particular, 'long long' which is a c99 feature.

int: This data type is used to store integers or whole numbers.

float: This data type is used to store decimal numbers, with a certain precision.

double: Similar to float, but with greater precision.

char: This data type is used to store individual characters, such as letters, numbers,

and symbols.

void: This data type is used to represent the absence of a type or value.

In addition to these basic data types, C also has several other data types, including:

short, long, and long are used for integers

float and double are used for floating-point numbers.

bool data type to represent boolean values (true or false)

enum to create an enumeration, a distinct type consisting of a set of named values.

struct which can be used to define a custom data type that can hold multiple variables

of different types.

typedef which can be used to give a type a new name.

When defining a variable in C, you have to specify its data type and give it a name.

For example:

int age;

This creates a variable called "age" that can hold an integer value.

It is important to choose the appropriate data type when declaring a variable, this

will ensure that the variable has enough memory to store the values and that the

operations on it are the expected ones.

70

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

Some Question and Answers

Simple C basic Language: Short Question and Answer

Q: What is a variable in C? A: A variable in C is a named location in memory that

can store a value of a specific data type, such as an integer or a floating-point

number. Variables are used to store values that can change during the execution of

a program.

Q: How do you declare a variable in C? A: Variables in C are declared using the

keywords "int", "float", "double", "char" etc, followed by the variable name, and

an assignment operator (=) to assign a value to the variable. For example, to

declare an integer variable named "x" and assign it the value 5, you would use the

following statement: "int x = 5;".

Q: What is a function in C? A: A function in C is a block of code that performs a

specific task and can be reused throughout a program. Functions are defined using

the keyword "function" followed by the function name, a set of parentheses () that

may contain parameters, and a block of code enclosed in curly braces {}. For

example, the following is the syntax for a function named "example": "void

example() { // code to be executed }".

Q: What is the main function in C? A: The main function in C is the starting point

of a C program. It is a special function that is called when the program is executed.

The main function is defined using the keyword "int" followed by the function

name "main", a set of parentheses (), and a block of code enclosed in curly braces

{}. For example, the following is the syntax for the main function: "int main() { //

code to be executed }". The execution of the program starts from the main function

and ends with the last statement of the main function.

Simple C basic Language: Short Question and Answer

2 / 2

Q: What is the difference between a variable and a constant in C?

A: In C, a variable is a location in memory that can hold a value that can be

changed during program execution. A constant, on the other hand, is a value that

cannot be changed once it has been assigned. Constants are typically declared

using the keyword "const" before the data type, for example: "const int x = 5;".

Variables do not have the keyword "const" before the data type, for example: "int x

= 5;".

Q: What are the basic data types in C?

A: The basic data types in C are:

1. int (integer) - stores whole numbers (e.g. -1, 0, 1, 2)

2. float (floating point number) - stores decimal numbers (e.g. 3.14, 0.01, -2.5)

71

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

3. double (double precision floating point number) - stores decimal numbers

with more precision than float

4. char (character) - stores a single character (e.g. 'a, 'b', '0', '$')

5. void - used to indicate that a function does not return a value

Additionally, C also has derived data types such as arrays, pointers, and structures.

1. What is C programming language?

2. Who created C programming language?

3. What are the main features of C programming language?

4. What are the basic data types in C?

5. How do you declare variables in C?

6. What are the basic control structures in C?

7. How do you create functions in C?

8. What is the purpose of the main function in C?

9. How do you input and output data in C?

10. What are pointers in C and how do they work?

11. How do you use arrays in C?

12. How do you use structures in C?

13. What are the basic operators in C?

14. How do you debug C programs?

15. How does C compare to other programming languages?

